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All topological spaces are assumed to be completely regular and
Hausdorff.

Problem (Arhangelskii, 1967)

Does there exist in ZFC a nondiscrete extremally disconnected
topological group?



Definition

A topological space is said to be extremally disconnected if the
closure of any open set in this space is open (or, equivalently, the
closures of any two disjoint open sets are disjoint).

Froĺık:

(ℵ+0 = 2ℵ0 or (2ℵ0)+ 6= 22
ℵ0 ) Any homogeneneous extremally

disconnected compact space is finite. (NB: There exist
nondiscrete infinite extremally disconnected spaces.)

If X is extremally disconnected, then the fixed point set of
any self-homeomorphism X → X is clopen.

Corollary

If X × X is extremally disconnected, then X is discrete.

(Malykhin) Any extremally disconnected group contains an
open Boolean subgroup.
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A group G is Boolean if g2 = e for any g ∈ G .

All Boolean groups are

Abelian;

vector spaces over Z2;

free (algebraically);

any Boolean group with basis X is isomorphic to

the set [X ]<ω of all finite subsets of X with the operation 4
of symmetric difference (A4B = A ∪ B \ (A ∩ B));

any Boolean group with basis X is isomorphic to the direct
sum

⊕|X | Z2 of |X | copies of Z2, i.e., the set of finitely
supported maps g : X → Z2 with pointwise addition (in the
field F2).
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Simplest extremally disconnected space:

Each free filter F on any set X is associated with XF = X ∪ {∗}
(∗ is a point not belonging to X ); all points of X are isolated and
the neighborhoods of ∗ are {∗} ∪ A, A ∈ F .

XF is extremally disconnected ⇐⇒ F is an ultrafilter.

Simplest candidate for an extremally disconnected group:

B lin(XF ) is B(X ) = [X ]<ω with the group topology generated by
the neighborhood base at zero

U = {a ∈ [X ]<ω : a ⊂ A} = 〈A〉, A ∈ F

(〈A〉 is the subgroup generated by A).

The only nonizolated point ∗ of XF is identified with 0 = ∅, and
each x ∈ X is identified with {x} ∈ [X ]<ω.
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Sirota (1968):

defined a selective ultrafilter on ω and proved its existence
under CH;

proved that if U is a selective ultrafilter on ω, then B lin(ωU )
is an extremally disconnected group.

(In fact, B lin(ωF ) is extremally disconnected ⇐⇒ the filter F is
a selective ultrafilter.)

An ultrafilter on ω is selective if, for any partition {Cn : n ∈ ω} of
ω such that Cn /∈ U for n ∈ ω, there exists a selector in U , that
is, a set A ∈ U such that |A ∩ Cn| = 1 for all n.

Ramsey’s theorem: If n ∈ N and the set [ω]n of n-element
subsets of ω is partitioned into finitely many pieces, then there is
an infinite set H ⊂ ω homogeneous with respect to this partition,
i.e., such that [H]n is contained in one of the pieces.

An ultrafilter U on ω is called a Ramsey ultrafilter if, given any
positive integers n and k , every partition F : [ω]n → {1, . . . , k} has
a homogeneous set H ∈ U .
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Theorem (Booth+Kunen)

The following conditions on a free ultrafilter U on ω are
equivalent:

(i) U is Ramsey;

(ii) U is selective: for any partition {Cn : n ∈ ω} of ω such that
Cn /∈ U for n ∈ ω, there exists a selector in U , that is, a set
A ∈ U such that |A ∩ Cn| = 1 for all n;

(iii) for any sequence {An : n ∈ ω}, where An ∈ U , there exists an
A ∈ U such that A = {an : n ∈ ω} and an ∈ An for all n;

(iv) for any family {An : n ∈ ω}, where An ∈ U , the diagonal
intersection ∆n∈ωAn = {k ∈ ω : k ∈

⋂
m<k Am} belongs

to U ;

(v) for any An ∈ U , n ∈ ω, there exists a strictly increasing
function f : ω → ω such that f (n + 1) ∈ Af (n) for each n ∈ ω
and the range of f belongs to U .



We might define Ramsey filters as filters satisfying condition (i),
but this would not yield new objects.

Conditions (ii) and (iii), which are trivially equivalent for
ultrafilters, become potentially different. Moreover, interpreting
A ∈ U as ω \ A /∈ U in condition (ii), we obtain the definition of
+-selective filters, which are not necessarily ultrafilters.

The proof of the implication (iii) =⇒ (v), as well as the trivial
equivalence (iv) ⇐⇒ (v) and the obvious implications
(iv) ⇐⇒ (iii), remains valid for filters; however, the standard
proof of (v) =⇒ (i) uses U being an ultrafilter.

A dissection of Sirota’s construction shows that B lin(ωF ) is
extremally disconnected for any filter on ω satisfying (v).
Therefore, any selective filter is an ultrafilter.
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Definition

An ultrafilter U on ω is

a P-point if, for any partition {An : n ∈ ω} of ω such that
An /∈ U for any n, there exists an A ∈ U such that
|A ∩ An| < ℵ0 for any n;

Ramsey, or selective, if, for any partition {An : n ∈ ω} of ω
such that An /∈ U for any n, there exists an A ∈ U such that
|A ∩ An| 6 1 for any n;

Q-point = Ramsey − P-point:
for any partition {An : n ∈ ω} of ω such that An is finite for
any n, there exists an A ∈ U such that |A∩An| 6 1 for any n;

rapid if, for any partition {An : n ∈ ω} of ω such that An is
finite for any n, there exists an A ∈ U such that |A ∩ An| 6 n
for any n ⇐⇒ every function ω → ω is majorized by the
increasing enumeration of some element of U .
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CH =⇒ ∃ selective ultrafilters, P 6= Q 6= selective 6= P

ZFC =⇒ ∃ an ultrafilter which is neither a P-point nor a Q-point

Shelah: There is a model in which 6∃ P-point ultrafilters

Miller: In Laver’s model 6∃ Q-points (but ∃ P-points)

Old problem

Does there exist a model in which there are no P-points and no
Q-points?



Theorem (Reznichenko + S.)

The existence of a countable nondiscrete extremally
disconnected group implies the existence of a rapid ultrafilter.

If there are no rapid (ultra)filters, then any countable
nondiscrete topological group contains a discrete subset with
precisely one limit point.

Can the proof be transferred to uncountable groups?

Under what conditions do rapid ultrafilters on uncountable
cardinals exist?

Denis Saveliev
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Let κ be a regular cardinal.

Proposition

If f : κ→ κ is such that f −1(α) is stationary for no α ∈ κ, then
there exists a club C in κ for which f � C is 1-to-1.

Proof.

If {α : f (α) < α} is stationary, then Fodor’s lemma =⇒ there
exists a stationary S such that f � S = const, which contradicts
the assumption. Hence {α : f (α) < α} is not stationary.
Let A = {α : f (α) ≥ α}. A contains a club. Let
B = {α : f (β) < α ∀β < α}. B is a club. Let S = A ∩ B. Then S
contains a club and f � S is 1-to-1. Indeed, if α, β ∈ S and α < β,
then β ∈ B =⇒ f (α) < β and β ∈ A =⇒ f (β) ≥ β.



Corollary

If U is an ultrafilter on κ containing the club filter, then U is a
Q-point in the sense that, for any partition κ = tAα, |Aα| < κ,
there exists a U ∈ U such that |U ∩ Aα| = 1 for each α.

Corollary

The club filter on any regular cardinal is selective.
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If there exists a nondiscrete extremally disconnected P-space, then
there exists a measurable cardinal.

If there are no measurable cardinals, G is a (Boolean) extremally
disconnected group, and {0} =

⋂
Hn, where each Hn is an open

subgroup of G , then G contains an open (extremally disconnected)
subgroup of cardinality at most the continuum.

In Miller’s model such a group contains an extremally disconnected
subgroup of cardinality ℵ1.
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